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Synopsis
DFA models can be likened to computer imaging techniques such as rendering.

They both involve complex calculations that take a considerable amount of CPU
time. This paper reviews some techniques to provide higher resolution DFA
pictures, such as Latin Hypercube sampling, low discrepancy sequences,
parallel processing, using aggregate distributions, avoiding correlations, and
avoiding unnecessary recalculations. These techniques can often provide
solutions that require less CPU time or less elapsed time. Examples of the
effectiveness (or ineffectiveness) of these techniques are provided. The
occasional impracticalities of implementing these techniques are also
highlighted.
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Getting a Better Picture @

Using Random Numbers

m DFA is like computer
animation / graphics

m choosing more
representative scenarios
provides a better picture

Using a Halton Sequence




What is the DFA Picture?

m Size = capital requirements

m shape = risk characteristics and capital
allocation

m location = risk management & strategy

m reality = complex and chaotic
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Latin Hypercube Sampling @

CLASSIC SOLUTIONS
m What is Latin Hypercube sampling?

— a form of stratified sampling

— split each distribution up into sections of
equal probability

— jumble up these sections, then sample a
value from each in turn

— it is not truly “random” as you are
extremely unlikely to get two consecutive
values close together
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Sample from each section in random order
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m By ensuring that
a sample is
taken from each
probability range,
Latin Hypercube
sampling better
represents the
underlying
distribution
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Convergence

lterations
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—you can’t get three claims in a row from the top

percentile

— need a new sample distribution (dimension) for

every claim
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m Speed: e

— need to calculate the inverse cumulative
density function

— need to store flags to show which sections
have been used

— because of dimensionality a Latin Hypercube
based model may take longer to converge
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m What is a low discrepancy sequence?
— a special type mathematical function
— not a random number sequence

— remembers and avoids previous values in
the sequence

— increases “resolution” as the sequence
progresses



Low Discrepancy Sequences
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no empty spots
no clumping

samples
“around”
previous values

need fewer
sample values
to get a good
estimate
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m Dimensionality

— need an extra dimension for every sample
(e.g. every individual claim)

— some e.g. Sobol sequence will not extend
to higher dimensions

— others e.g. Halton need a new prime
number for each dimension

— the number of dimensions that can be used
In practice is 15 - 40
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m Speed:

— need to calculate the inverse cumulative
density function
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m density function not smooth

— however, summary values (e.g. the area
under a tail) converge faster
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m not just a one year situation

— multi year - what about when exposure is
stochastic?

— first scenario: exposure = 100,000

— generate claim count from Poisson(10)
— second scenario: exposure = 110,000
— generate claim count from Poisson(11)
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Parallel Processing @

m can it be done?

— at least three software packages do it
m independence of iterations

— need to co-ordinate seed values
m information bottlenecks



Parallel Processing

m what are the speed advantages?
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— 2 machines = 60% time requirements

Time Savings
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m cost of computers versus cost of clever

solutions
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B aggregate distributions
— reinsurance considerations
— risk shape considerations

— difficult to measure risk management
options
m only recalculate changes
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m correlations versus causative relationships
— correlated samples are slow to generate

m choose the number of iterations to match the
resolution required
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Private Sub cmdSystem Click()
frmSystem.Show 1
Unload frmSystem
LoadRunParms

End Sub

m compiled code versus interpreted languages
— compiled code runs faster

16 -
14 -
12
10

Time for 100,000 iterations

o N A O o
| I L ;

C++




h
Platform @

CLASSIC SOLUTIONS

g
BN LA
% 48 L

m black box versus open system
— nothing is standard
— everything needs to be customised
— how do things work



